DETERMINING THE TEMPERATURE FIELD AND THE
MELTING RATE OF AN ELECTRODE IN THE MULTIPHASE
SYSTEM OF THE ELECTRIC-SLAG MELTING PROCESS

G. F. Ivanova and N, A, Avdonin UDC 536.248.2

The problem of melting metals by the electric-slag method is formulated mathematically and
some numerical results are shown. The parameters which need to be determined include
the rate of electrode melting as well as the melting and crystallization isotherms of the elec-
trode and the ingot,

1, We consider the following metal melting system in the electric slag process (Fig. 1).

At first, the water-cooled cylindrical crystallizer contains an initial layer of metal with the height ]
and a layer of liquid slag with the height H and the electrical resistivity p. A cylindrical metallic electrode
is immersed in the slag bath to a certain depth h, and the voltage supply is switched on, The electric cur-
rent flowing through the slag bath heats it up and the electrode begins to melt, The molten metal passes
through the slag bath, is purged of impurities, settles on top of the initial solid metal layer, and crystal-
lizes. As the crystallizing ingot builds up, it displaces slag in the bath. The depth h of the electrode in the
bath is maintained constant throughout the process by means of an automatic regulator which pulls the
electrode down at a speed equal to the melting rate. The purpose of the analysis presented here is to deter-
mine the melting rate of the electrode, the temperature fields in the electrode, in the slag bath, and in the
ingot, and also the position as well as the shape of erystallization and melting isotherms. A knowledge of
these parameters allows one to exert considerable control over the ingot crystallization process for pur-
poses of quality improvement. :

In the course of solving the problem, its mathematical formulation was continually refined so as to
approach the conditions of a real process* '

In the following will be given a mathematical description of the heat flow problem and some results of
numerical computations. The methods of numerical solution and the evaluation of computed results will be
given a detailed treatment in a separate article.

The problem is analyzed with the following stipulations:

1) heat travels in the solid and in the liquid phase by conduction, convection in the liquid phase is
accounted for only by introducing equivalent thermal conductivities;

2) the electrical resistivity of the slag bath does not depend on the temperature, the problem of deter-
mining the heat source potential and density fields in the slag is formulated independently of the
heat flow problem (see 2);

3) the temperature at which drops of molten metal break away from the electrode (the superheat tem-
perature) is congidered known;

*The problem formulation and the boundary constraints were refined with the assistance of L. A, Volokhon-
skii, A, A, Nikulin, A, L, Tsikerman, et al,, staff members of the Vacuum-Arc Melting Laboratory at
the VNIETO (All-Union Scientific~Research Institute, Electrical Engineering Department). The authors
are also truly grateful to Prof. L. 1. Rubinshtein for being always available for congultations and for his
valuable advice on formulating the problem.
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Fig, 1. Schematic representation of an electric-slag
mold: 1) melting electrode; 2) slag bath; 3) crystalliz-
ing ingot; 4) solid and liquid phase interface; 5) slag
45 crust; Bj are the various segments of the outer bound-
B, | 2IY (i=0,1, 2, 3, 4, 5, 6).

©

&

4) the effect of metal drops on the temperature field in the slag bath is disregarded: the temperature
change in drops passing through the slag bath is estimated approximately,

In this problem we are dealing with cylindrical symmetry. The cylindrical coordinates (r, z) are set
up as follows: the origin of coordinates lies on the axis of the cylinders, on the top surface of the slag bath;
the z-axis along the axis of the cylinders points in the positive direction downward into the crystallizing in-
got (Fig. 1).

Let v(t) be the linear melting rate of the electrode. In the chosen system of coordinates the electrode
then moves at the speed v{t) and the equation of heat conduction for the electrode will be

div (ky (T) grad T) = ey, (‘;—f + o) %T) , (1)

where kg is the thermal conductivity, ¢; is the specific heat, and p, is the density. The slag bath is station-
ary in the chosen system of coordinates, it contains heat sources of density g(r, z), and the equation of
heat conduction for points in it is

div ( &y (T) grad T) = ¢;p, % —g(r, 2). (2)
In the chosen system of coordinates the crystallizing ingot moves at the speed (R%/Rz)v(t), where R, is the
electrode radius and R is the slag bath radius, and the equation of heat conduction for it is

. or ; or
div (ko (T) grad T) = ¢,0, (W + 71;—;— u(®) FZ_) . (3)

We denote by z = z,(r, {) theliquid—solid phase interface in the melting ingot. In the chosen system
of coordinates the condition for giving off the latentheat of crystallization (the Stefan condition) at this in-
terface can be written as
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where v is the specific latent heat of melting for a given metal and k; g0, Ky 1iq are the thermal conduct-
ivities of its solid and of its liquid phase respectively.

We will now derive the Stefan condition for the electrode and slag bath interface. Under actual cir-
cumstances, at the electrode which is melting down there forms a small drop of liquid. Disregarding the
geometrical dimensions of such a drop, we derive that condition for the electrode boundary in an approxi-
mate form. Let z = zy(r, t) be the equation of the electrode boundary and z = z4(r, t) be the equation of the
drop boundary. Then, if 6, is the melting temperature of the metal, T|, _ zo(r, t) = 6. Let us assume
that the drop breaks away at a known superheat temperature 6;, i.e., that T, - z,(r, t) =0 Since the
depth of the electrode immersion in the liquid bath is maintained constant, hence the temperatures and the
heat fluxes become as usually equal at the drop boundary:
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Fig. 2. Referring to the problem of
determining the potential field; s; are
S, | the various outer boundary segments
of the region (i =1, 2, 3, 4, 5, 6, 7).
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The Stefan condition is satisfied at the boundary z = zy(r, t):
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Integrating equation (1) over region V occupied by the liquid drop, we have

f S‘ j iV (kutiqgrad T)do = cytsqPuriq y f f T doto ” -g—: dv). .
v

Performing an Ostrogradskii transformation on the left-hand side of Eq. (7) and using relations (5), (6) will

yield .
jj‘j‘ div (kyy;qgrad T) do :5‘\5’ koliq—al ds -|-j‘j konqg ds. (8)
p ) on ) on

= —jj kohq—— az"(r by vpov(t)) ds +Hk T s,

Here Dy and D, are surfaces bounding the liquid drop. The value of 8T/9z in the right-hand side of Eq. (7)
can be approximated by

/PR T (9)
Bz 2 (r, t)—z,(r, 1)
and then
. o on Rs d 2y(r.t) (1 )
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It is well known that the temperature and the shape of the liquid drop stabilize fast and, therefore, the terms
containing 8/0t may be neglected in (7) and (8), Considering that the magnitude of 8T/dn varies only slightly
along the surfaces Dy, D, and taking into account relations (8) and (10), we can rewrite (7) as

aT
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2=2y—0

oT
— sk
z=2,-H0 v 0

where s, and s, are the areas of surfaces Dy and D, respectively. Since the volume of a liquid drop is small,
we will assume that s; = s, = s and that the boundaries of D, and D, are congruent. Thus, for the electrode
boundary z = zy(r, t) we finally obtain the condition:
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and a temperature discontinuity

T)oesmo = 80 Tl o =01 (13)

We now proceed to the conditions at the inner slag bath and crystallizing ingot interface, We will
assume that drops of metal falling off the electrode do instantaneously spread over the surface of the cry~
stallizing ingot and that all the heat they have carried is given off within a region of radius Ry < R. At the
slag bath and ingot interface z = H, then, the compatibility condition for heat fluxes and temperatures

or or

T’Z:H—H) = TJZ:H—O andkl —é; = k() E; N (14)

will prevail outside that region (z = H, Ry < r < R), while the condition
or oT RS 15
b =k o v apy 6 —T) o)

and temperature equality will prevail inside that region (z =H, 0 = r = Ry). The second term on the right-
hand side of (15) accounts for the heat carried by drops at temperature 6, into that region.

We next consider the constraints at the outer boundaries of the system. Along segments By and B, of
the boundary (Fig. 1) we stipulate radiation, according to the Stefan—Boltzmann law, into a medium at
a known temperature Tj:

oT
—k = = 80 (T+213)'—(T,+273)%), ¢, H€T,, i=0, 4, (16)

where ¢ is the Boltzmann constant and €, ¢, are the emissivities of the metal and of the liquid bath contents
respectively. Along the other boundary segments, where values of the heat transfer coefficients are known
from experimental data, the constraints are given as follows:

—k %E =a,(T—T), (r, 9€T,, i=1, 2, 3, 5. (17)

Let us examine more closely the constraints at the lateral surfaces of the slag bath and the crystal-
lizing ingot, At the lateral surface of the slag bath, as a result of the cooling action by the external medium,
there forms a crust of solid slag along which the crystallizing ingot slides, This crust is thin as compared
to the bath dimensions. We will consider its effect approximately, disregarding its geometrical dimensions.
For this, we assume that the temperature varies linearly across the crust thickness. The constraint con-
dition can then be easily transferred from outside to inside the crust. If we neglect the Stefan heat at the
inside boundary of the solid crust in the slag bath (the position of this boundary stabilizes fast), then we
have the continuity conditions for heat fluxes and temperatures inside the crust and, since the temperature
distribution in the crust has been assumed linear,

oT oT

Beant— = Py ——
1501 or R0 1507 or

(18)

’
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k 1iq 0T
o= Thoogeo 1 550

r=R—n—0
At the outer crust surface (boundary B;) the heat is transferréd from the surrounding medium in accordance
with Newton's law:

or

"‘kl,sol‘ér

= oy (T —Ts)|,_g - {19)
r=R

Finally, taking (18) into consideration, the constraint condition (19) on the inside of the crust r = R—7 along
boundary B; becomes

or
- k],sol( I+ i" ) =TT, (r, I€T, (20)

Along boundaries B, and B, we obtain conditions analogous to (20), considering that the solid crust borders
on solid metal (boundary B,) and on liquid metal (boundary B,) of the crystallizing ingot:

67



/]

Q00

t =4.5 min; 3) t =6.75 min; 4) t =9 min; 5 t =
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Fig. 3. Changes in the shape of the crystallization
/ isotherm, as a function of time: 1) t = 2.25 min; 2)
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We will now derive the constraint conditions for the end surface of the electrode (boundary B). In
practice the electrode is sufficiently long to be considered infinite, For calculations by the finite-differ-
ences method it is necessary that the space occupied by the electrode be as small as possible, A simple
transfer of the constraint condition from infinity, where 5u/dn = 0, to an electrode section z = zy(z4 < 0)
may result in a considerable distortion if z; is not sufficiently small. Let us derive the relation for this
electrode section z = z, by taking the conditions of heat transfer into account more precisely. Preliminary
calculations have shown that at some distance from the slag bath surface the temperature is almost con-
stant across the electrode section, We are, therefore, allowed to introduce the mean temperature for an
ingot section:

Ry

Tm= “2TSV rT(r, 2)dr. (23)
Ry p

Multiplying Eq. (1) for the electrode by (2/ Rg)r and integrating with respect to r from 0 to R,, then replacing
T by Ty at r = R in the corresponding constraint equation (17), we obtain the following equation for the
steady-state process:

fo g —ab? g+ gy AT =T =0, 24)

whose solution (considering that Ty, is bounded at z — ) is

T =™ +Ts 1 ~ p+ V48,
(25)

CoPg¥ 20
__ Coog , B= 5
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ky Rk,

The compatibility condition for heat fluxes and temperatures yields for Ty at z = z5 (boundary Bg) the New-
tonian constraint

oT,
a—;n = (T —Ty), 2=y \ (26)

The initial temperatures at time t = 0 in the electrode (v}, in the slag bath (ui), and in the crystal-
lizing ingot (u,) are given,

2. As has been noted earlier, the electrical resistivity of the slag bath is considered constant. Fur-
thermore, changes in the electrode shape and in the crust thickness have not been taken into account. Under
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these assumptions, the problem of determining the heat sources in a slag bath reduces to finding the steady-
state potential field u which satisfies the standard Laplace equation in the slag bath region (Fig. 2). At the
electrode boundary (sg) the potential is given as u*; at the slag bath and crystallizing ingot interface (bound-
ary s;) the potential is equal zero; at the free surface of the slag bath (boundary s,) 9u/0n = 0; on the out-
side of the solid crust (boundaries s, and s,) the potential is given as zero (contact with the electrically con-
ducting crystallizer wall), We will account approximately for the action of a solid crust on the crystallizer
wall and on the electrode surface (boundary s;). Since the thickness of the solid crust n is small, the
potential drop across the crust thickness will be assumed linear and the conditions on the outside of the
crust will be transferred to the inside of the crust, as was done before (see (18), (19), (20)), yielding

— _ai — _p‘.l_lg. u, (r’ Z) ESZr (27)
or o.M
9 Plg wum, (, Des, (28)
ar  py

where n and n are the thickness of the solid crust at the boundaries s, and s; respectively. With the poten-
tial field u known, if is easy to determine the density of heat sources in the slag bath:

o=t (B (2T}

3, Without dwelling any further on the numerical method of solving the stated problem and on the
necessary transformations, we will only note that this solution was obtained by the Peaceman—Rochford
method of variable directions [1], with the Stefan heat at the unknown interface represented in terms of a
lumped heat capacity according to O. A, Oleinik — S. L. Kamenomostskaya [2, 3]. We will just point out
certain outstanding features of the computation.

The line z = H (the slag bath and crystallizing ingot interface) participates in the vertical interactions,
with conditions (14) and (15) certainly satisfied on it. During horizontal iterations the temperature on this
line does not change. The linear velocity v(t) of the electrode motion begins to be counted when the tem-
perature of the ingot tip immersed in the slag bath reaches the superheat point, The velocity v(t} is deter-
mined from condition (12) at the point (r = 0, z =h). At this point one may assume that dzy(r, t)/or =0,
i.e., that 0T/6r =0 and, consequently, 8T/9n =8T/0z. In the computations it was assumed, approximately,
that ¢ = 7R}, In this way, the condition from which velocity v(t) is calculated becomes

oT oT
"o ’+—k0 E! 2 (30)
£ — lo=h ‘ p=h—
v Y0, 1 €oPg (B, —8)

In the computations we replace the derivatives dT/dz by corresponding difference quotients taken from the
respective precursory layer. As the electrode acquires a velocity at z = h, there also occurs a tempera-
ture discontinuity along the vertical iterations (see Eq. (13)). If the constraints are nonlinear (heat trans-
fer according to Boltzmann's law, dependence of heat transfer coefficients on the temperature), then on
the right-hand sides of the constraint equations we can separate out a linear term whose coefficients are
taken from the respective precursory layer. The Peacemen—Rachford method is also used for numerical-
ly determining the potential field in the slag bath.

The computation procedure for the problem formulated here was applied to the following variant of
an experimental melting process: Ry =0.015m, R, =0.3 m, R=0.055m, h =0.029 m, H = 0.0564 m,
n =0.0007 m, 1y =0.0001 m, py gop = 7800 kg/m3, Pgs 1ig = 7000 kg/m?, Cp, sol = 754.2 J/kg-°C, ¢, lig
=838 J/kg - °C, ¢y = 1089 J/kg.°C, ky =34.92 J/m - sec- °C, Ky sol =2.33 J/m.sec-°C, Ky 1ig = 111.73
J/m-sec-°C, gy =0.8, g4 = 0.7, 6, =1455°C, §; = 1700°C, yy =u, = 150°C, u, = 1600°C, T, = T, = 100°C,
Ty =T; =150°C, Ty =Ty =20°C, o, =a; =2328 J/m?+°C - sec, 0y=0.154T (J/m2.°C *sec),
. — 0.047T47.65 for T <333°C;
. { 0,1T—10 for T>333°C;

w* =30V, py;, =0,00324 Q-m, p =2Q-m,
liq sol

The temperature field in the slag bath stabilizes relatively fast (approximately within 4 min) and the
cavity of liquid metal inside the already crystallized ingot freezes after approximately 18 min. How the
shape of the T = 6, isotherm for the crystallizing ingot changes with time is shown in Fig. 3. The melting
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v(t) stabilizes approximately after 6,5 min to 2.3 m/h, which agrees closely with experimental data (2.2
m/h). The maximum temperature of the slag bath is 1775°C. The depth of the liquid metal cavity in the
steady state differs from the experimentally determined depth by not more than 5%.

Calculations were performed on the BESM-4 computer with a time step of 0.36 sec, an r-step of
0.005 m, and with z-steps chosen as follows: 0.01 m in the electrode (outside the slag bath), 0.0035, 0,0025,
and 0.00548 m at various sections of the slag bath, and 0.005 m in the crystallizing ingot.
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NOTATION

is the radius of the wet region;

is the radius of the electrode;

is the radius of the ingot;

is the depth of electrode immexrsion in the slag bath;

is the height of the slag bath;

is the thickness of the slag crust at the lateral surface of the bath;

is the thickness of the slag crust at the electrode;

are the densities of the slag, of the solid metal, and of the liquid metal;

are the specific heat of the slag, of the solid metal, and of the liquid metal;

are the thermal conductivities;

are the emissivities of the metal and of the slag;

is the melting temperature of the metal;

is the superheat temperature of the metal;

is the temperature of liquid drops after passing through the slag bath;

are the initial temperatures of the electrode, of the slag bath, and of the ingot;

are the temperatures of the external media at the boundary segments 'y, Ty,
veey T; 5

are heat transfer coefficients at the boundary segments Ty, T'y, I'y, Ty, Ty

are the electrical resistivities of the liquid and the solid slag;

magnitude of the potential on boundary sq.
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