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The problem of melting metals by the electr ic-slag method is formulated mathematically and 
some numerical results are shown. The parameters  which need to be determined include 
the rate of electrode melting as well as the melting and crystallization isotherms of the elec-  
trode and the ingot. 

1. We consider the following metal melting system in the electric slag process (Fig. 1). 

At f irst ,  the water-cooled cylindrical crystal l izer  contains an initial layer  of metal with the height l 
and a l aye r  of liquid slag with the height H and the electrical resist ivi ty p. A cylindrical metallic electrode 
is immersed in the slag bath to a certain depth h, and the voltage supply is switched on. The electric cur-  
rent flowing through the slag bath heats it up and the electrode begins to melt. The molten metal passes 
through the slag bath, is purged of impurities, settles on top of the initial solid metal layer,  and crystal-  
l izes.  As the crystallizing ingot builds up, it displaces slag in the bath. The depth h of the electrode ia the 
bath is maintained constant throughout the process by means of an automatic regulator which pulls the 
electrode down at a speed equal to the melting rate. The purpose of the analysis presented here is to deter-  
mine the melting rate of the electrode, the temperature fields in the electrode, in the slag bath, and in the 
ingot, and also the position as well as the shape of crystallization and melting isotherms. A knowledge of 
these parameters  allows one to exert  considerable control over the ingot crystallization process for pur- 
poses of quality improvement. 

In the course of solving the problem, its mathematical formulation was continually refined so as to 
approach the conditions of a real process*. 

In the following will be given a mathematical description of the heat flow problem and some results of 
numerical computations. The methods of numerical solution and the evaluation of computed results will be 
given a detailed treatment in a separate article.  

The problem is analyzed with the following stipulations: 

1) heat travels in the solid and in the liquid phase by conduction, convection in the liquid phase is 
accounted for only by introducing equivalent thermal eonductivities; 

2) the electrical  resist ivity of the slag bath does not depend on the temperature,  the problem of deter-  
mining the heat source potential and density fields in the slag is formulated independently of the 
heat flow problem (see 2); 

3) the temperature at which drops of molten metal break away from the electrode (the superheat tem- 
perature) is considered known; 

*The problem formulation and the boundary constraints were refined with the assistance of L. A. Volokhon- 
skii, A. A. Nikulin, A. L. Tsikerman, et a l . ,  staff members of the Vacuum-Arc Melting Laboratory at 
the VNII~.TO (All-Union Scientific-Research Institute, Electrical  Engineering Department). The authors 
are  also truly grateful to Prof.  L. I. Rubinshtein for being always available for consultations and for his 
valuable advice on formulating the problem. 
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Fig. 1. Schematic  r ep resen ta t ion  of an e l e c t r i c - s l a g  - 
mold: 1) mel t ing e lec t rode ;  2) slag bath; 3) c r y s t a l l i z -  
ing ingot; 4) solid and liquid phase in terface;  5) s lag 
crus t ;  B i a r e  the var ious  segments  of the outer  bound- 
a r y  (i = 0, 1, 2, 3, 4, 5, 6). 

4) tile effect  of meta l  d rops  on the t e m p e r a t u r e  field in the s lag bath is d i s regarded :  the t e m p e r a t u r e  
change in drops  pass ing  through the slag bath is e s t ima ted  approximate ly .  

In this p rob lem we a re  dealing with cyl indrical  s y m m e t r y .  The cyl indrical  coordihates  (r,  z) a r e  set  
up as follows: the or igin of coordinates  l ies  on the axis  of the cy l inders ,  on the top su r face  of the s lag bath; 
the z -ax i s  along the axis of the cyl inders  points in the posi t ive d i rec t ion  downward into the c rys ta l l iz ing  in-  
got (Fig. 1}. 

Le t  v(t) be the l inear  melt ing ra te  of the e lec t rode .  In the chosen s y s t e m  of coordinates  the e lec t rode  
then moves  at  the speed v(t) and the equation of heat  conduction for  the e lec t rode  will be 

div(k o(T) gradT)=cop o ~ -  + v(t) ~ , (1) 

where  k 0 is the t he rm a l  conductivity,  c 0 is the specif ic  heat,  and P0 is the density.  The slag bath is s ta t ion-  
a r y  in the chosen s y s t e m  of coordinates ,  it contains heat  sources  of densi ty  g(r ,  z), and the equation of 
heat  conduction for  points in it is 

OT 
div ( k 1 (T) grad T) ---- c~91 ~ -  - -  g (r, z). (2) 

In the chosen sy s t em  of coordinates  the c rys ta l l i z ing  ingot moves  at the speed (R~/R2)v(t), where  R 2 is the 
e lec t rode  radius  and R is the s lag bath rad ius ,  and the equation of heat  conduction for  it is 

(aT R~ v(t)aT) (3) div (k o (T) grad T) = Cop o ~ / -  + - ~  ~ . 

We denote by z = z~(r, t) t h e l i q u i d - s o l i d p h a s e  in ter face  in the melt ing ingot. In the chosen sy s t em 
of coordinates  the condition for  giving off the l a t en thea t  of c rys ta l l iza t ion  (the Stefan condition) at this  in-  
t e r f ace  can be wri t ten  as 

( Oz2 R~ ) OT I k OT (4) 
7po Ot RZ v (t) = kvol- N-  ~ z=z.+o 

�9 . Z - ~ z ~ - - 0  - -  

where  ,/ is the specif ic  la tent  heat  of mel t ing for  a given meta l  and k0, sol,  k%liq a r e  the t he rma l  conduct-  
ivi t ies  of its solid and of its liquid phase respec t ive ly .  

We will now der ive  the Stefan condition for  the e lec t rode  and slag bath in terface .  Under actual  c i r -  
cums tances ,  at  the e lec t rode  which is mel t ing down there  fo rms  a smal l  drop of liquid. Dis regard ing  the 
geome t r i ca l  d imensions  of such a drop,  we der ive  that condition for  the e lec t rode  boundary in an approx i -  
mate  form.  Let  z = z0(r, t) be the equation of the e lec t rode  boundary and z = zl(r ,  t) be the equation of the 
drop  boundary.  Then, if 0 o is the melt ing t e m p e r a t u r e  of the meta l ,  TI z _ z (r ,  t) = 0o. Let  us a s s u m e  
that the drop b reaks  away at a known superhea t  t e m p e r a t u r e  01, [ e , that-T]~ _ z (r t) = 01 Since the 

�9 " " - -  ! [  , " 

depth of the e lec t rode  i m m e r s i o n  in the liquid bath is maintained constant ,  hence the t e m p e r a t u r e s  and the 
heat  fluxes become as usual ly  equal at the drop  boundary." 
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Fig.  2. Refe r r ing  to the p rob lem of 
de termining  the potential  field; s t a r e  
the var ious  outer  boundary segments  
of the region (i = 1, 2, 3, 4, 5, 6, 7). 

OT OT 
k l  -~a . . . .  +0 = koliq C3-~- . . . .  - 0 "  

(5) 

The Stefan condition is sa t is f ied at  the boundary z = z0(r , t): 

YPo ~ Ot an lz==.-o ~ On . . . .  +o " 

In tegra t ing equation (1) ove r  region V oeeupied by the liquid drop,  we have 

~j'div(koliqgradT)do:coliqPoliq(~f OT-~--dvq-v(t,~;~ OToz do). (7> 

V V V 

P e r f o r m i n g  an Os t rogradsk i i  t r ans fo rma t ion  on the lef t -hand side of Eq. (7) and using re la t ions  (5), 
yield 

f;; div(kol:qgradT, dv=ffkoliqOO-~ ds-F~koliq OT ds (8, 
O d  n JJ On 

V Dx D2 

(6) will 

= -  (ko. ~ - - + V O o , , ( o  ds+ k, ~ 
\ on Ot On 

DI D~ 

Here  D~ and D 2 a r e  su r f aces  bounding the liquid drop.  Theva lue  of 0T/Oz in the r ight-hand side of Eq. (7) 
can be approximated  by 

OT 01 --Oo (9) 
Oz z~ (r,  t) - -  zo (r, t )  

and then 

2~ R= zt(r,O S~ ~" ~ rdr S ~ do= (0,--%) d~ dz= (O,--Oo)=Rg. 
Oz zl (r,  t)  - -  z o (r,  t)  

V 0 zo(r,l) 

(lO) 

I t  is well  known that the t e m p e r a t u r e  and the shape of the liquid drop s tabi l ize  fas t  and, the re fo re ,  the t e r m s  
containing 0 /~t  may  be neglected in (7) and (8). Considering that  the magnitude of 0T/0n  va r i e s  only sl ightly 
along the su r f aces  Di, D 2 and taking into account re la t ions  (8) and (10), we can r ewr i t e  (7) as 

O7" OT 

where  s i and s 2 a r e  the a r e a s  of su r faces  D i and D 2 respec t ive ly .  Since the volume of a liquid drop is sma l l ,  
we will a s sume  that  s i = s 2 = s and that the boundar ies  of D 1 and D 2 a r e  congruent.  Thus,  for  the e lec t rode  
boundary  z = z0(r , t) we finally obtain the condition. 

OT OT 
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and a t e m p e r a t u r e  discontinuity 

T[ . . . .  -0 = 0o, T] . . . .  +0 = 01" (13) 

We now proceed  to the conditions at  the inner  s lag bath and c rys ta l l i z ing  ingot in terface .  We will 
a s s u m e  that d rops  of meta l  falling off the e lec t rode  do instantaneously sp read  over  the su r face  of the c r y -  
s ta l l iz ing ingot and that  all  the heat  they have c a r r i e d  is given off within a region of radius  R 1 < R. At the 
slag bath and ingot in ter face  z = H, then, the compat ib i l i ty  condition for  heat  fluxes and t e m p e r a t u r e s  

OT c)T (14) 
TIz=H+o : ZJz=H_O and k 1 "~Z = k~ 0--~' 

will p reva i l  outside that  region (z = H, R 1 < r < R), while  the condition 

OT OT . R~ v(t) (0o--V) (15) k, =k0 -g;+-p? 

and t e m p e r a t u r e  equali ty will  p reva i l  inside that region (z = H, 0 -< r _<_ Rt). The second t e r m  on the r igh t -  
hand side of (15) accounts  for  the heat  c a r r i e d  by drops  at t e m p e r a t u r e  02 into that region.  

We next cons ider  the cons t ra in t s  at  the outer  boundar ies  of the sys t em.  Along segments  B 0 and B 4 of 
the boundary (Fig. 1) we st ipulate radiat ion,  according  to the S t e f a n - B o l t z m a a n  law, into a mediuna at 
a known t e m p e r a t u r e  T F 

- - k  c)T O~-~ : eft ((T+273)4--(T~+273)~), (r, z) C P~, i=0, 4, (16) 

where  ~ is the Bol tzmann constant  and e0, e 4 a re  the emis s iv i t i e s  of the metal  and of the liquid bath contents 
r e spec t ive ly .  Along the o ther  boundary segmen t s ,  where  values of the heat  t r a n s f e r  coefficients  a re  known 
f rom exper imenta l  data,  the cons t ra in t s  a r e  given as follows: 

- - k  0_~T __-- a ~ ( T - - T i )  , (r, z) EFi,  i = l ,  2, 3, 5. (17)  
On 

Le t  us examine m o r e  c lose ly  the cons t ra in t s  at the l a t e ra l  su r faces  of the s lag bath and the c r y s t a l -  
l izing ingot. At the l a t e ra l  su r face  of the s lag bath, as a resu l t  of the cooling action by the external  medium,  
there  f o r m s  a c rus t  of solid s lag along which the c rys ta l l i z ing  ingot s l ides .  This c rus t  is thin as compared  
to the bath d imensions .  We will cons ide r  its e f fec t  approx imate ly ,  d i s regard ing  i ts  geome t r i ca l  d imensions .  
F o r  this ,  we a s s u m e  that the t e m p e r a t u r e  va r i e s  l inea r ly  a c r o s s  the c rus t  th ickness .  The cons t ra in t  con- 
dition can then be eas i ly  t r a n s f e r r e d  f rom outside to inside the c rus t .  If  we neglect  the Stefan heat  at the 
inside boundary of the solid c rus t  in the s lag bath (the posit ion of this boundary s tabi l izes  fast) ,  then we 
have the continuity conditions for  hea t  f luxes and t e m p e r a t u r e s  inside the c rus t  and, s ince the t e m p e r a t u r e  
dis tr ibut ion in the c ru s t  has  been a s s u m e d  l inear ,  

kas~ r=R-0 = kls~ (18) 
Or C)r r = R _ n _ o  ' 

liq 0T r=R--n--0 TI'=R : Tl'=~-~-~ + ~ kl;sol" O~- 

At the ou te r  c ru s t  su r f ace  (boundary B3) the heat  is t r a n s f e r r e d  f rom the surrounding medium in accordance  
with Newton 's  law: 

k aT 
- l , so1 -~r  ,=~ = %(T- -T3) I r=R-  (19) 

Final ly,  taking (18) into cons idera t ion ,  the cons t ra in t  condition (19) on the inside of the c rus t  r = R - ~  along 
boundary B 3 becomes  

1+ san ~ aT aa (T- - r3 )  , (r, z) EFa. (20) - -  k~'s~ k~, ] ~ - r  = 

Along boundar ies  B 1 and ]32 we obtain conditions analogous to (9,0), cons ider ing  that the solid c rus t  b o rd e r s  
on solid metaJ (boundary B1) and on liquid meta l  (boundary B2) of the c rys ta l l i z ing  ingot: 
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Fig.  3. Changes  in the shape of  the c ry s t a l l i z a t i on  
i s o t h e r m ,  as  a funct ion of t ime:  1) t = 2.25 min;  2) 
t = 4.5 min;  3) t = 6.75 rain; 4) t = 9 min;  5) t = 
1.1.25 milx; 6) t = 13.5 minx; 7) t = 15.75 min;  8) t = 18 
rain; r and z in m e t e r s .  

, %~1 ~ OT 
--ko,so 1 1-i- k, ] ~ =  %(T Ta), (r, z) EPl, 

__ ko.liq ( l +  %rl ) OT % ( T - - T 2 )  , (r, z) EPv 

(21) 

(22) 

We wil l  now de r ive  the cons t r a in t  condi t ions  fo r  the end s u r f a c e  of  the e l ec t rode  (boundary  136). In 
p r a c t i c e  the e l ec t rode  is suf f ic ient ly  long to be cons ide red  infinite. F o r  ca lcu la t ions  by the f i n i t e - d i f f e r -  
ences  method it is  n e c e s s a r y  that  the space  occupied  by the e l ec t rode  be as  smal l  as  poss ib le .  A s imple  
t r a n s f e r  of  the cons t r a in t  condit ion f r o m  infinity,  w h e r e  0u/~n = 0, to an e l ec t rode  sec t ion  z = z0(z 0 < 0) 
m a y  r e s u l t  in a cons ide rab l e  d i s to r t ion  if z 0 is not suf f ic ient ly  smal l .  Le t  us de r ive  the re la t ion  fo r  this  
e l ec t rode  sec t ion  z = z 0 by taking the condi t ions  of heat  t r a n s f e r  into accoun t  m o r e  p r e c i s e l y .  P r e l i m i n a r y  
ca lcu la t ions  have shown that  at  s o m e  d i s tance  f r o m  the s lag  bath s u r f a c e  the t e m p e r a t u r e  is a l m o s t  con -  
s tan t  a c r o s s  the e l e c t r o d e  sec t ion .  We a r e ,  t h e r e f o r e ,  a l lowed to in t roduce  the mean  t e m p e r a t u r e  for  an 
ingot  sec t ion :  

R~ 

2 f rT(r,  z)dr. (23) Tm= R--~-2 
0 
0 

(1) fo r  the e l ec t rode  by (2/R~)r and in tegra t ing  wi th  r e s p e c t  to r f r o m  0 to Rz, then rep lac ing  Mult iplying Eq. 
T by T m at r = R in the c o r r e s p o n d i n g  cons t r a in t  equat ion (17), we  obtain the  following equat ion fo r  the 
s t e a d y - s t a t e  p r o c e s s :  

02Tm OTto 2 
ko - 3 ~  - -  c~176 - 3 7 -  + ~ 2  % (Tin - -  TS) = 0, 

(24) 

whose  solut ion (cons ide r ing  that  T m is bounded at  z -~ ~o) is 

Tm : ce'~'* + Ts, ~'1 = ~t + V ~  ~ + ft, 
(25) 

c0p0v , ~=  2 %  , = 
Wx -- ko R~ko c const. 

The compat ib i l i ty  condit ion fo r  hea t  f luxes and t e m p e r a t u r e s  y ie lds  fo r  T m at  z = z 0 (boundary  Be) the N e w -  
ionian cons t r a in t  

OTto (26) 
Oz : :  % (Tin - TS)' % = ~&" 

The init ial  t e m p e r a t u r e s  at  t ime  t = 0 in the e l ec t rode  (u0) , in the s lag  bath (ul), and in the c r y s t a l -  
l iz ing ingot (u2) a r e  given.  

2. As has  been noted e a r l i e r ,  the e l e c t r i c a l  r e s i s t i v i t y  of the s lag  bath is c o n s i d e r e d  constant .  F u r -  
t h e r m o r e ,  changes  in the e l ec t rode  shape and in the c r u s t  th ickness  have not been taken into account .  Under  
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these assumptions,  the problem of determining the heat sources  in a slag bath reduces  to finding the s teady-  
state potential field uwhich  sat isf ies the s tandard Laplace equation in the slag bath region (Fig. 2). At the 
e lect rode boundary (%) the potential is given as u*; at the slag bath and crysta l l iz ing ingot interface (bound- 
a r y  %) the potential is equal zero; at the free surface of the slag bath (boundary s4) au/an = 0; on the out- 
side of the solid c rus t  (boundaries s 1 and s 2) the potential is given as zero  (contact with the e lec t r ica l ly  con- 
ducting c rys ta l l i ze r  wall). We will account approximately for the action of a solid c rus t  on the c rys ta l l i ze r  
wall and on the electrode surface (boundary %). Since the thickness of the solid c rus t  ~ is small ,  the 
potential drop ac ros s  the crus t  thickness will be assumed l inear  and the conditions on the outside of the 
c rus t  will be t r ans f e r r ed  to the inside of the c rus t ,  as was done before (see (18), (19), (20)), yielding 

Ou • prig u, (r, z) Cs~, (27) 
Or PTq 

a u =  pIig (.--u*), (r, z)Es~, (28) 
Or Ps'ql 

where  ~ and 71 a re  the thickness of the solid crus t  at the boundaries s 2 and s 5 respect ively.  With the poten- 
tial field u known, it is easy  to determine the density of heat sources  in the slag bath: 

g(r, z ) = 7  (\ Or /(oqu'~ 2_~.(Ou~_z )2}  . (29) 

3. Without dwelling any fur ther  on the numerical  method of solving the stated problem and on the 
n e c e s s a r y  t ransformat ions ,  we will only note that this solution was obtained by the P e a c e m a n - R o c h f o r d  
method of variable direct ions [1], with the Stefan heat at the unknown interface represented in t e rms  of a 
lumped heat capaci ty  according to O. A. Oleinik - S. L. Kamenomostskaya [2, 3]. We will just point out 
cer tain outstanding features  of the computation. 

The line z = H (the slag bath and crysta l l iz ing ingot interface) par t ic ipates  in the ver t ical  interactions,  
with conditions (14) and (15) cer ta inly  satisfied on it. During horizontal  i terat ions the tempera ture  on this 
line does not change. The l inear  veloci ty v(t) of the electrode motion begins to be counted when the t em-  
pera tu re  of the ingot tip immersed  in the slag bath reaches  the superheat  point. The velocity v(t) is de te r -  
mined f rom condition (12) at the point (r = 0, z = h). At this point one may assume that az0(r, t ) / a r  = 0, 
i. e . ,  that ~ T / a r  = 0 and, consequently, aT /an  = aT/0z .  In the computations it was assumed,  approximately,  
that s = ~R~. In this way, the condition f rom which velocity v(t) is calculated becomes 

OT ~=r,+ OT ~ h 
kl ~ z  - -  k~ 

v (t) = ' & -z  = _ (30) 
~?Po ~ cOP~ (01 - -  0o) 

In the computations we replace the derivat ives  dT/dz by corresponding difference quotients taken from the 
respect ive  p r e c u r s o r y  layer .  As the electrode acquires  a velocity at z = h, there also occurs  a t e m p e r a -  
ture discontinuity along the ver t ical  i terat ions (see Eq. (13)). I f  the constra ints  are  nonlinear (heat t r ans -  
fer  according to Bol tzmann 's  law, dependence of heat t r ans fe r  coefficients on the temperature) ,  then on 
the r ight-hand sides of the constraint  equations we can separate  out a l inear  t e r m  whose coefficients are  
taken from the respect ive p r e c u r s o r y  l aye r .  The P e a c e m e n - R a c h f o r d  method is also used for  numer ica l -  
ly determining the potential field in the slag bath. 

The computation procedure  for the problem formulated here  was applied to the following variant  of 
an experimental  melting p rocess :  R 1 = 0.015 m, R 2 = 0.3 m, R = 0.055 m, h = 0.029 m, H = 0.0564 m, 

= 0.0007 m, Vl = 0.0001 m, &, sol = 7800 kg /m a, P0, liqo = 7000 kg /m 3, co, sol = 754.2 J / k g .  ~ co, liq 
= 838 J /kg -  C, ct = 1089 J / k g .  ~ k 0 = 34.92 J / m .  s e c .  C, ki, sol = 2.33 J / m .  sec -  ~ kl, iiq - 111.73 
J / m - s e c . ~  e 0 =0 .8 ,  e 4 =0 .7 ,  00 = 1455~ 01 = 1700~ u 0 = u  2 = 150~ u 1 = 1600oc, T o = T  t = 100oc, 
T2 = Ta = 150~ T4 = T5 = 20~ a2 = (x3 = 2328 J / m  2- ~ �9  a t  = 0.154 T ( J /m 2. ~ .sec) ,  

0.047T-}-7.65 for T ~< 333 ~ 
0,1T--10 for T >  333 ~ 

u* = 30 V, Pliq = 0.00324 ~ .m,  Psol = 2~2 �9 m. 

The tempera tu re  field in the slag bath stabil izes relat ively fast  (approximately within 4 rain) and the 
cavity of liquid metal inside the a l ready crys ta l l ized ingot f reezes  af ter  approximately  18 min. How the 
shape of the T = 00 isotherm for the crysta l l iz ing ingot changes with t ime is shown in Fig. 3. The melt ing 
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v(t) stabilizes approximately after 6.5 min to 2.3 m/h,  which agrees closely with experimental data (2.2 
m/h). The maximmn temperature of the slag bath is 1775~ The depth of the liquid metal cavity in the 
steady state differs from the experimentally determined depth by not more than 5%. 

/ 
Calculations were performed on the BESM-4 computer with a time step of 0.36 sec, a n r-s te  p of 

0.005 m, and with z-steps chosen as follows: 0.01 m in the electrode (outside the sl~[g bath), 0.0035~ 0.0025, 
and 0.00548 m at various sections of the slag bath, and 0.005 m in the crystallizing ingot. 

R l 

R2 
R 
h 
H 

Pl, P0, sol, P0, liq 
el, Co, sol, c0,1iq 
k l, k0,sol, k0, liq 
~0, ~4 
8 o 

6 2 
uO, ul, �89 
To, T i . . . . .  T~ 

Pliq, Psol 
u*  

N O T A T I O N  

is the radius of the wet region; 
is the radius of the electrode; 
is the radius of the ingot; 
is the depth of electrode immersion in the slag bath; 
is the height of the slag bath; 
is the thickness of the slag crust  at the lateral surface of the bath; 
is the thickness of the slag crust at the electrode; 
are the densities of the slag, of the solid metal, and of the liquid metal; 
are the specific heat of the slag, of the solid metal, and of the liquid metal; 
are the thermal conductivities; 
are the emissivities of the metal and of the slag; 
is the melting temperature of the metal; 
is the superheat temperature of the metal; 
is the temperature of liquid drops after passing through the slag bath; 
are the initial temperatures of the electrode, of the slag bath, and of the ingot; 
are the temperatures of the external media at the boundary segments F0, r l, 

~ 1 7 6 1 7 6  ~ ;  

are heat t ransfer  coefficients at the boundary segments Ft, Fz, F3, F4, Fs; 
are the electrical resistivities of the liquid and the solid slag; 
ma~i tude  of the potential on boundary s 6. 
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